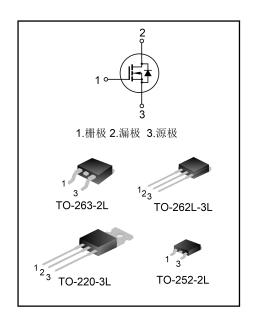


95A、68V N沟道增强型场效应管


描述

SVT077R5NT/D/S/KL N沟道增强型功率 MOS 场效应晶体管采用 士兰的 LVMOS 工艺技术制造。先进的工艺及元胞结构使得该产品具有 较低的导通电阻、优越的开关性能及很高的雪崩击穿耐量。

该产品可广泛应用于不间断电源及逆变器系统的电源管理领域。

特点


- 95A, 68V, $R_{DS(on)}$ (#20) =6.5m Ω @ V_{GS} =10V
- ◆ 低栅极电荷量
- 低反向传输电容
- ◆ 开关速度快
- ◆ 提升了 dv/dt 能力

产品规格分类

产品名称	封装形式	打印名称	环保等级	包装方式
SVT077R5NT	TO-220-3L	077R5NT	无铅	料管
SVT077R5NDTR	TO-252-2L	077R5ND	无卤	编带
SVT077R5NS	TO-263-2L	077R5NS	无卤	料管
SVT077R5NSTR	TO-263-2L	077R5NS	无卤	编带
SVT077R5NKL	TO-262L-3L	077R5NKL	无铅	料管

杭州士兰微电子股份有限公司 http://www.silan.com.cn

SVT077R5NT(D)(S)(KL)说明书

极限参数(除非特殊说明, Tc=25°C)

参数		<i>ħħ</i> ; □	参数范围		₩ /÷
		符号	SVT077R5NT/S/KL	SVT077R5ND	单位
漏源电压		V _{DS}	68		V
栅源电压		V_{GS}	±25		V
漏极电流	T _C =25°C		95		A
柳似电 抓	T _C =100°C	l _D	67] ^
漏极脉冲电流		I _{DM}	380		А
耗散功率(T _C =25℃)		D	150	143	W
-大于 25℃ 每摄氏度减少		P _D	1.0	0.95	W/°C
单脉冲雪崩能量	(注1)	E _{AS}	42	21	mJ
工作结温范围		TJ	-55∼+175		°C
贮存温度范围		T _{stg}	-55∼+175		°C

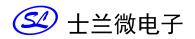
热阻特性

参数	符号	参数值			
参 奴	10.2	SVT077R5NT/S/KL	SVT077R5ND	单位	
芯片对管壳热阻	R _{eJC}	1.0	1.05	°C/W	
芯片对环境的热阻	$R_{\theta JA}$	62.5	62.0	°C/W	

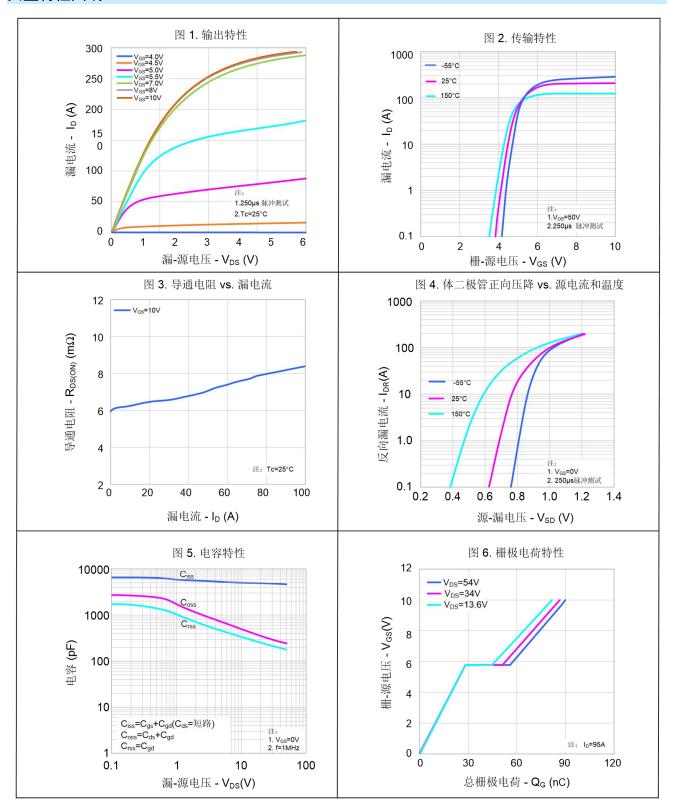
杭州士兰微电子股份有限公司 http://www.silan.com.cn

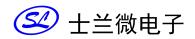
SVT077R5NT(D)(S)(KL)说明书

关键特性参数(除非特殊说明, Tc=25°C)

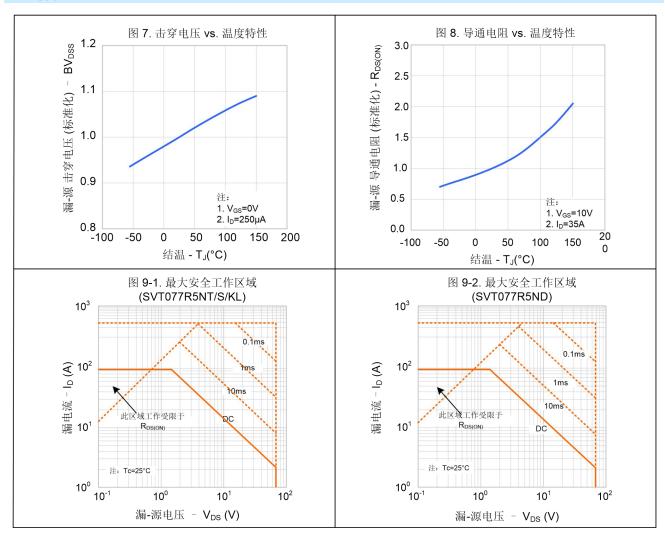

参数	符号	测试条件	最小值	典型值	最大值	单位
漏源击穿电压	BV _{DSS}	V _{GS} =0V, I _D =250μA	68			V
漏源漏电流	I _{DSS}	V _{DS} =68V, V _{GS} =0V			1.0	μΑ
栅源漏电流	I _{GSS}	V _{GS} =±20V, V _{DS} =0V			±100	nA
栅极开启电压	$V_{\text{GS(th)}}$	$V_{GS}=V_{DS}$, $I_D=250\mu A$	2.0		4.0	V
导通电阻		V _{GS} =10V, I _D =35A (TO-220-3L)		6.5	7.5	mΩ
寸旭电阻	$R_{DS(on)}$	V _{GS} =10V, I _D =35A (TO-252-2L)		6.5	8.0	mΩ
栅极电阻	R_{G}	f=1MHz		1.7		Ω
输入电容	C _{iss}			4832		
输出电容	Coss	f=1MHz, V _{GS} =0V, V _{DS} =30V		296		pF
反向传输电容	Crss			213		
开启延迟时间	$t_{d(on)}$	V -24V V -40V B -240		48		
开启上升时间	t_{r}	V_{DD} =34V, V_{GS} =10V, R_{G} =24 Ω , I_{D} =95A		98		no
关断延迟时间	$t_{d(off)}$	注2, 3)		181		ns
关断下降时间	t _f	(在2, 3)		135		
栅极电荷量	Qg	Vpp=54V, Vgs=10V, Ip=95A		90		
栅极-源极电荷量	Q_gs	(注 2, 3)		27		nC
栅极-漏极电荷量	Q_{gd}	(± Z, 3)		26		

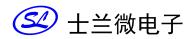
源-漏二极管特性参数

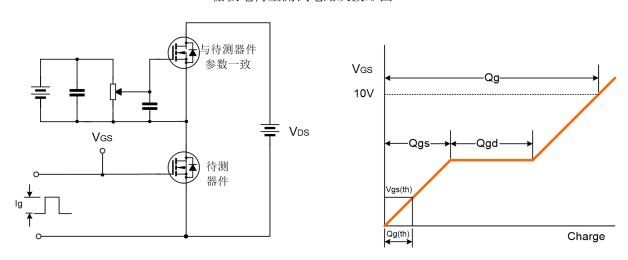

参数	符号	测试条件	最小值	典型值	最大值	单位
源极电流	Is	MOS 管中源极、漏极构成的反偏			95	۸
源极脉冲电流	I _{SM}	P-N 结			380	Α
源-漏二极管压降	V _{SD}	I _S =20A, V _{GS} =0V			1.4	V
反向恢复时间	T _{rr}	I _S =47.5A, V _{GS} =0V, dIF/dt=100A/μs		30		ns
反向恢复电荷	Qrr	(注2)		0.03		μC

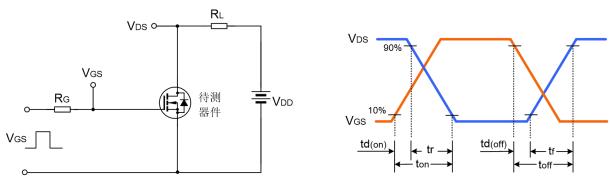

注:

- 1. L=1mH, I_{AS} =29A, V_{DD} =50V, R_{G} =25 Ω ,开始温度 T_{J} =25 $^{\circ}$ C;
- 2. 脉冲测试: 脉冲宽度≤300µs, 占空比≤2%;
- 3. 基本上不受工作温度的影响。

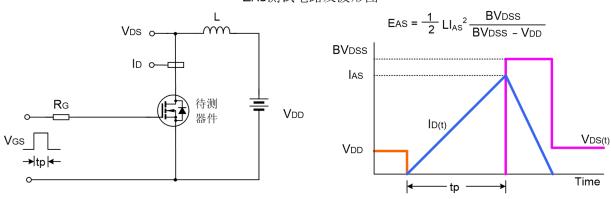


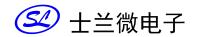

典型特性曲线


典型特性曲线 (续)

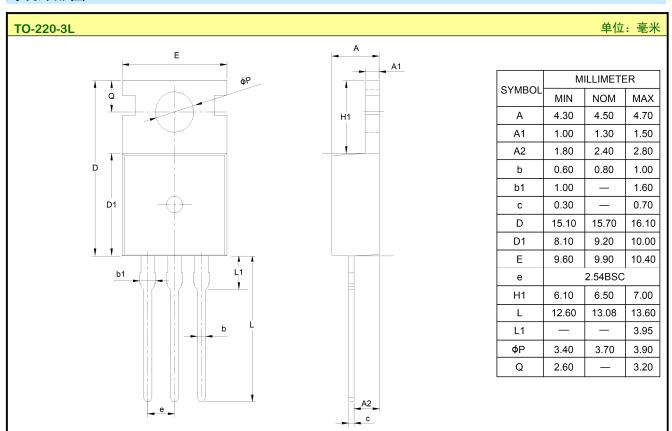


典型测试电路

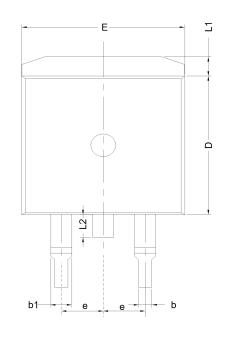

栅极电荷量测试电路及波形图

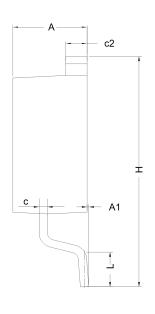


开关时间测试电路及波形图

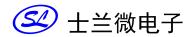


EAS测试电路及波形图

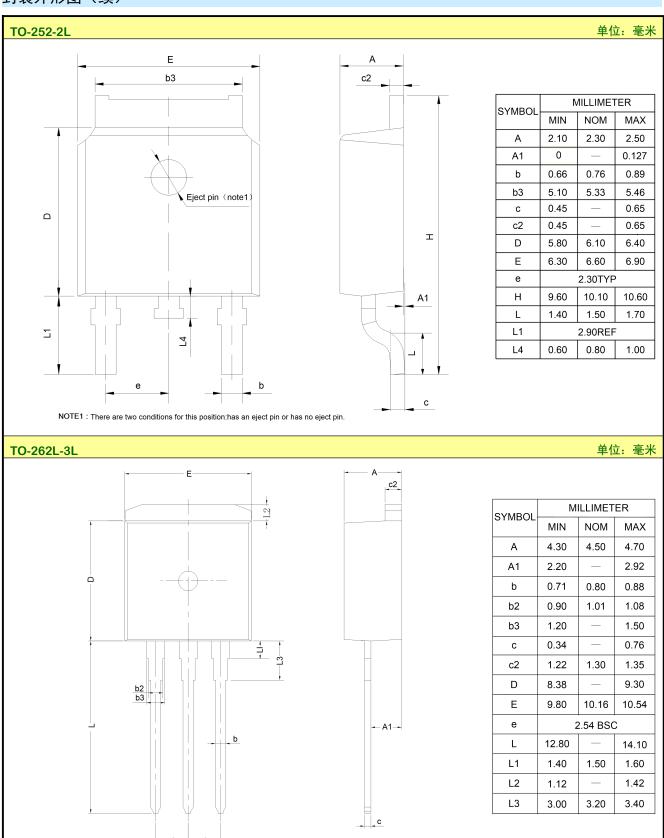




封装外形图



TO-263-2L 单位: 毫米



SYMBOL	MILLIMETER					
	MIN	NOM	MAX			
Α	4.30	4.57	4.72			
A1	0	0.10	0.25			
b	0.71	0.81	0.91			
b1	1.17	_	1.50			
С	0.30	_	0.60			
c2	1.17	1.27	1.37			
D	8.50	_	9.35			
Ε	9.80	_	10.45			
е	2.54BSC					
Н	14.70	_	15.75			
L	2.00	2.30	2.74			
L1	1.12	1.27	1.42			
L2	_	_	1.75			

封装外形图 (续)

SVT077R5NT(D)(S)(KL)说明书

重要注意事项:

- 1. 士兰保留说明书的更改权, 恕不另行通知。
- 2. 客户在下单前应获取我司最新版本资料,并验证相关信息是否最新和完整。产品应用前请仔细阅读说明书,包括其中的电路操作注意事项。
- 3. 我司产品属于消费类电子产品或其他民用类电子产品。
- 4. 在应用我司产品时请不要超过产品的最大额定值,否则会影响整机的可靠性。任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用我司产品进行系统设计、试样和整机制造时遵守安全标准并 采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生。
- 5. 购买产品时请认清我司商标,如有疑问请与本公司联系。
- 6. 产品提升永无止境, 我公司将竭诚为客户提供更优秀的产品!

7. 我司网站 http://www.silan.com.cn

产品名称: SVT077R5NT(D)(S)(KL) 文档类型: 说明书

版 权: 杭州士兰微电子股份有限公司 公司主页: http://www.silan.com.cn

版 本: 1.6

修改记录:

- 1. 添加 SVT077R5NKL(TO-262L-3L)封装;
- 2. 删除命名规则
- 3. 更新典型电路图和重要注意事项
- 4. 更新曲线模板

版 本: 1.5

修改记录:

1. 添加 SVT077R5NS

版 本: 1.4

修改记录:

1. 将 TO-220-3L 和 TO-252-2L 的 RDSON 最大值分开

版 本: 1.3

修改记录:

1. 更新图 3 坐标

版 本: 1.2

修改记录:

1. 添加 SVT077R5ND (TO-252-2L) 封装

版 本: 1.1

修改记录:

1. 修改曲线

版 本: 1.0

修改记录:

1. 正式版本发布

杭州士兰微电子股份有限公司 http://www.silan.com.cn