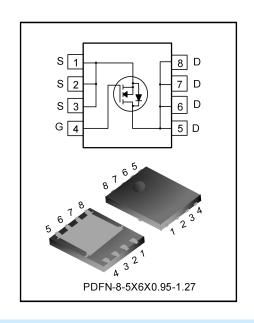


100A、30V N沟道增强型场效应管


描述

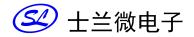
SVT035R5NL5 N沟道增强型功率MOS场效应晶体管采用士兰的LVMOS工艺技术制造。先进的工艺及元胞结构使得该产品具有较低的导通电阻、优越的开关性能及很高的雪崩击穿耐量。

该产品可广泛应用于不间断电源及逆变器系统的电源管理领域。

特点

- 100A, 30V, $R_{DS(on)}$ (# =4.0m Ω @ V_{GS} =10V
- 低栅极电荷量
- 低反向传输电容
- ◆ 开关速度快
- ◆ 提升了 dv/dt 能力

产品规格分类


产品名称	封装形式	形式 打印名称 环保等级		包装方式	
SVT035R5NL5TR	PDFN-8-5X6X0.95-1.27	035R5NL5	无卤	编带	

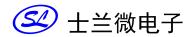
极限参数(除非特殊说明, T_C=25°C)

参数名称		符号	参数范围	单位	
漏源电压		V _{DS}	30	V	
栅源电压	栅源电压		±20	V	
漏极电流	T _C =25°C	ı	100	Α	
	T _C =100°C	- I _D	63	^	
漏极脉冲电流		I _{DM}	400	Α	
耗散功率 (T _C =25℃)		P _D	66	W	
- 大于 25°C 每摄氏度减少		FD	0.53	W/°C	
单脉冲雪崩能量 (注 1)		E _{AS}	200	mJ	
工作结温范围		TJ	-55∼+150	°C	
贮存温度范围		T _{stg}	-55∼+150	°C	

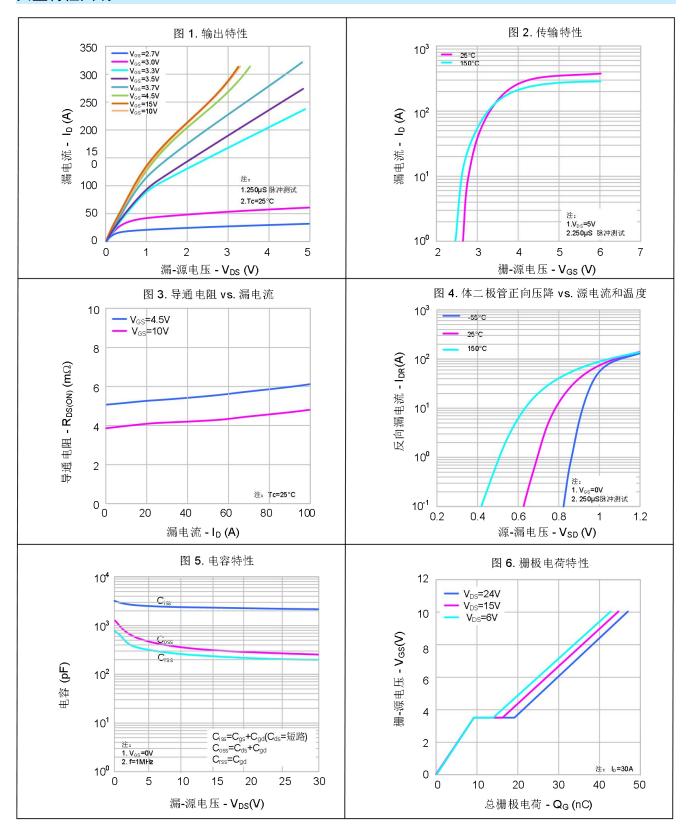
热阻特性

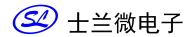
参数名称	符号	参数范围	单位
芯片对管壳热阻	Rejc	1.9	°C/W
芯片对环境的热阻	RθJA	50	°C/W

关键特性参数(除非特殊说明, Tc=25°C)

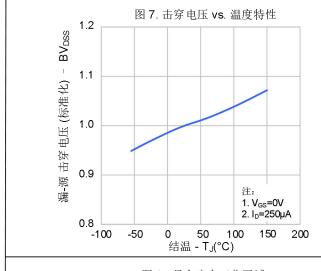

参数	符号	测试条件	最小值	典型值	最大值	单位
漏源击穿电压	BV _{DSS}	V _{GS} =0V, I _D =250μA	30			V
漏源漏电流	I _{DSS}	V _{DS} =30V, V _{GS} =0V			1.0	μΑ
栅源漏电流	I _{GSS}	V _{GS} =±20V, V _{DS} =0V			±100	nA
栅极开启电压	$V_{\text{GS(th)}}$	$V_{GS} = V_{DS}$, $I_D = 250 \mu A$	1	1.6	2.5	V
导通电阻	R _{DS(on)}	V _{GS} =10V, I _D =20A		4.0	5.5	mΩ
守		V _{GS} =4.5V, I _D =15A		5.2	7.2	$m\Omega$
栅极电阻	R_{G}	f=1MHz		4.9		Ω
输入电容	C _{iss}	5 4MI V 0V		2190		
输出电容	Coss	f=1MHz, V _{GS} =0V,		268		pF
反向传输电容	Crss	V _{DS} =25V		206		
开启延迟时间	$t_{d(on)}$	V 20V V 45V D 400		12		
开启上升时间	t _r	$V_{DD}=20V$, $V_{GS}=4.5V$, $R_{G}=1.8\Omega$,		88		no
关断延迟时间	$t_{d(off)}$	I _D =60A (注 2, 3)		140		ns
关断下降时间	t_{f}			83		
栅极电荷量	Qg	- V _{DD} =24V, V _{GS} =10V, I _D =30A (注 2, 3)		47		
栅极-源极电荷量	Q _{gs}			8.5		nC
栅极-漏极电荷量	Q_{gd}			9.9		

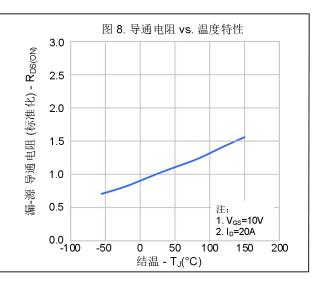
源-漏二极管特性参数

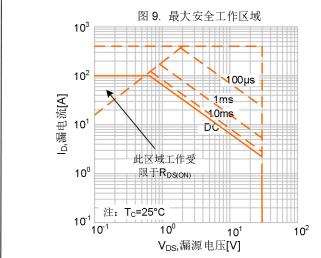

参数	符号	测试条件	最小值	典型值	最大值	单位
源极电流	Is	MOS 管中源极、漏极构成的反偏 P-N			100	۸
源极脉冲电流	I _{SM}	结			400	А
源-漏二极管压降	V _{SD}	I _S =20A, V _{GS} =0V			1.4	V
反向恢复时间	T _{rr}	Is=30A, V _{GS} =0V,		16		ns
反向恢复电荷	Q _{rr}	dIF/dt=100A/μs (注2)		6.9		nC

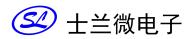

注:

- 1. L=0.5mH, V_{DD} =15V, V_{G} =10V, R_{G} =25 Ω ,开始温度 T_{J} =25 $^{\circ}$ C;
- 2. 脉冲测试: 脉冲宽度≤300μs, 占空比≤2%;
- 3. 基本上不受工作温度的影响。

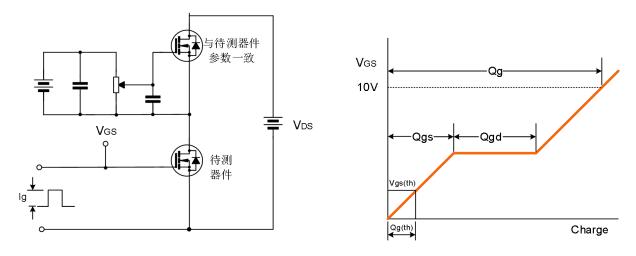


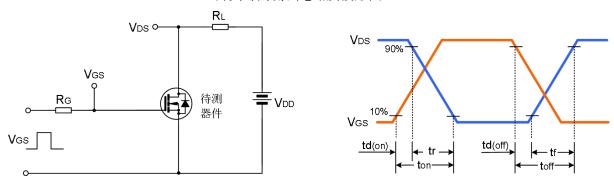

典型特性曲线



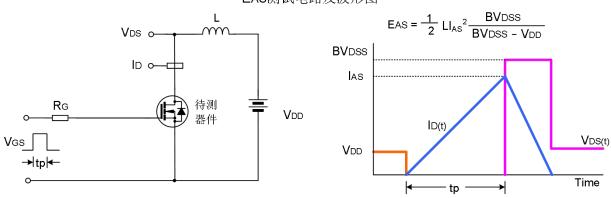


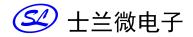
典型特性曲线 (续)



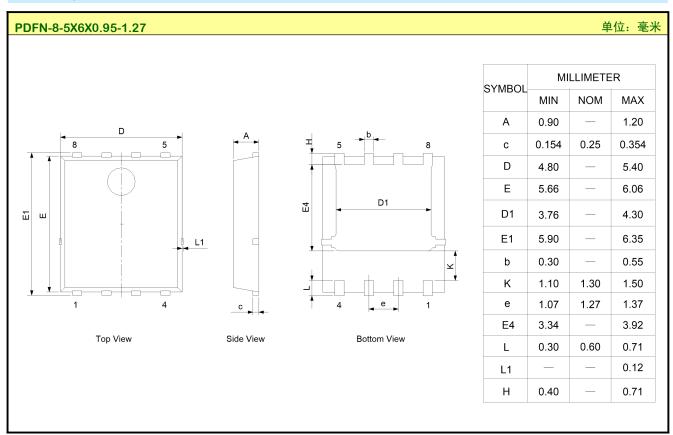


典型测试电路

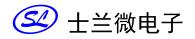

栅极电荷量测试电路及波形图



开关时间测试电路及波形图



EAS测试电路及波形图



封装外形图

重要注意事项:

- 1. 士兰保留说明书的更改权, 恕不另行通知。
- 2. 客户在下单前应获取我司最新版本资料,并验证相关信息是否最新和完整。产品应用前请仔细阅读说明书,包括其中的电路操作注意事项。
- 3. 我司产品属于消费类电子产品或其他民用类电子产品。
- 4. 在应用我司产品时请不要超过产品的最大额定值,否则会影响整机的可靠性。任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用我司产品进行系统设计、试样和整机制造时遵守安全标准并 采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生。
- 5. 购买产品时请认清我司商标,如有疑问请与本公司联系。
- 6. 产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!
- 7. 我司网站 http://www.silan.com.cn

SVT035R5NL5说明书

产品名称: SVT035R5NL5 文档类型: 说明书

版 权: 杭州士兰微电子股份有限公司 公司主页: http://www.silan.com.cn

版 本: 1.1

修改记录:

1. 更新曲线模板

- 2. 更新封装外形图
- 3. 更新重要注意事项

版 本: 1.0

修改记录:

1. 正式版本发布

杭州士兰微电子股份有限公司 http://www.silan.com.cn