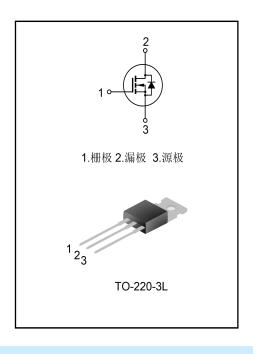


180A、30V N沟道增强型场效应管


描述

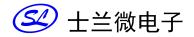
SVT033R5NT N沟道增强型功率 MOS 场效应晶体管采用士兰的 LVMOS 工艺技术制造。先进的工艺及元胞结构使得该产品具有较低的导通电阻、优越的开关性能及很高的雪崩击穿耐量。

该产品可广泛应用于不间断电源及逆变器系统的电源管理领域。

特点

- 180A, 30V, $R_{DS(on)}$ (# $2.8m\Omega$ V_{GS} = 10V
- ◆ 低栅极电荷量
- 低反向传输电容
- ◆ 开关速度快
- ◆ 提升了 dv/dt 能力

产品规格分类


产品名称	封装形式	打印名称	环保等级	包装方式
SVT033R5NT	TO-220-3L	033R5NT	无铅	料管

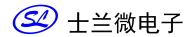
极限参数(除非特殊说明, Tc=25°C)

参数		符号	参数范围	单位
漏源电压		V _{DS}	30	V
栅源电压		V _{GS}	±20	V
	T _C =25°C		180	
漏极电流	T _C =100°C	l _D	114	Α
漏极脉冲电流		I _{DM}	720	Α
耗散功率(Tc=25℃)		_	171.2	W
- 大于 25°C 每摄氏度减少		P _D	1.14	W/°C
单脉冲雪崩能量(注 1)		E _{AS}	404	mJ
工作结温范围		TJ	- 55∼ + 150	°C
贮存温度范围		T _{stg}	-55∼+150	°C

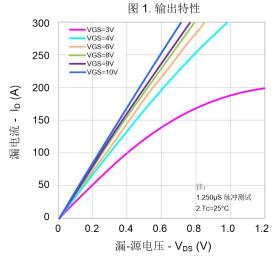
热阻特性

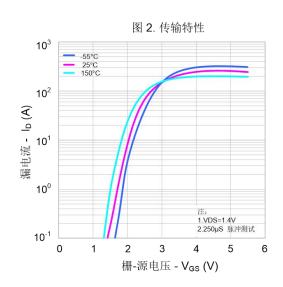
参数	符号	参数范围	单位
芯片对管壳热阻	$R_{ heta JC}$	0.73	°C/W
芯片对环境的热阻	$R_{\theta JA}$	62.5	°C/W

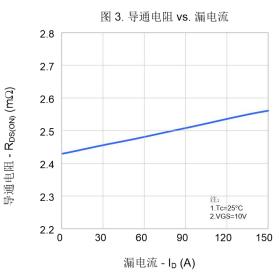
关键特性参数(除非特殊说明, Tc=25°C)

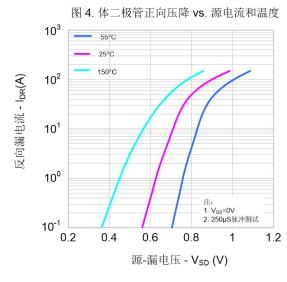

参数	符号	测试条件	最小值	典型值	最大值	单位
漏源击穿电压	BV _{DSS}	V _{GS} =0V, I _D =250µA	30			V
漏源漏电流	I _{DSS}	V _{DS} =30V, V _{GS} =0V			1.0	μA
栅源漏电流	I _{GSS}	V _{GS} =±20V, V _{DS} =0V			±100	nA
栅极开启电压	V _{GS(th)}	V _{GS} = V _{DS} , I _D =250µA	1		3	V
导通电阻		V _{GS} =10V, I _D =50A		2.8	3.5	mΩ
	R _{DS(on)}	V _{GS} =4.5V, I _D =40A		5	6.5	mΩ
栅极电阻	Rg	f=1MHz		2.8		Ω
输入电容	C _{iss}	f=4MU= \/ =0\/		5412		
输出电容	Coss	f=1MHz,V _{GS} =0V,		1010.6		pF
反向传输电容	C _{rss}	V _{DS} =15V		641.7		-
开启延迟时间	t _{d(on)}			11.9		
开启上升时间	t _r	V_{DD} =20V, V_{GS} =10V, R_G = 6Ω , I_D =50A		77		
关断延迟时间	t _{d(off)}	(注 2,3)		308.9		ns
关断下降时间	t _f			193.6		
栅极电荷量	Qg	V -24V V -40V I -50A		113.5		
栅极-源极电荷量	Q _{gs}	V _{DD} =24V, V _{GS} =10V, I _D =50A		14.6		nC
栅极-漏极电荷量	Q_{gd}	(注 2,3)		24.8		

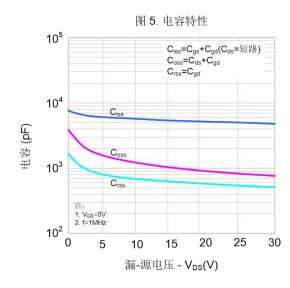
源-漏二极管特性参数

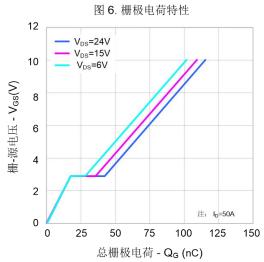

参数	符号	测试条件	最小值	典型值	最大值	单位
源极电流	Is	MOS 管中源极、漏极构成的反偏 P-N			180	_
源极脉冲电流	I _{SM}	结			720	Α
源-漏二极管压降	V _{SD}	I _S =150A,V _{GS} =0V			1.4	V
反向恢复时间	T _{rr}	I _S =25A,V _{GS} =0V,		51.7		ns
反向恢复电荷	Qrr	dIF/dt=100A/µs		0.04		μC

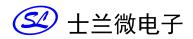

注:

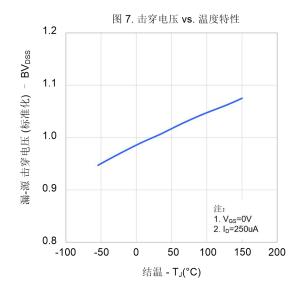

- 1. L=0.5mH, V_{DD} =24V, R_{G} =25 Ω ,开始温度 T_{J} =25 $^{\circ}$ C;
- 2. 脉冲测试:脉冲宽度≤300μs,占空比≤2%;
- 3. 基本上不受工作温度的影响。

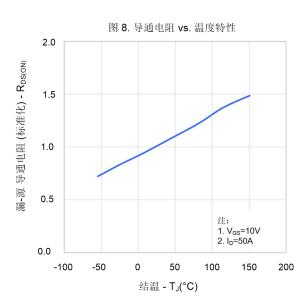


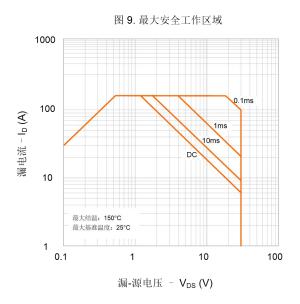

典型特性曲线

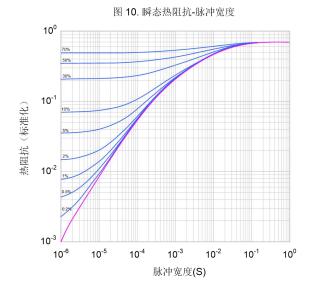




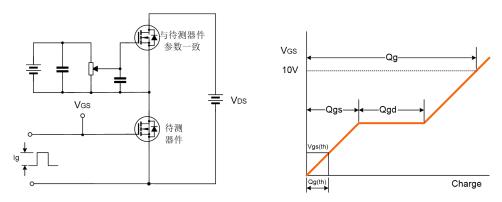


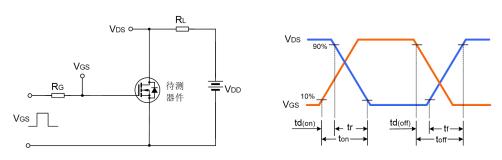


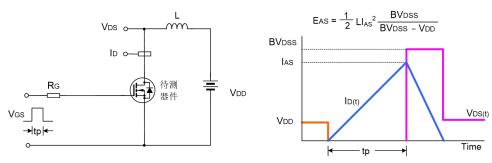


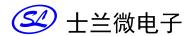


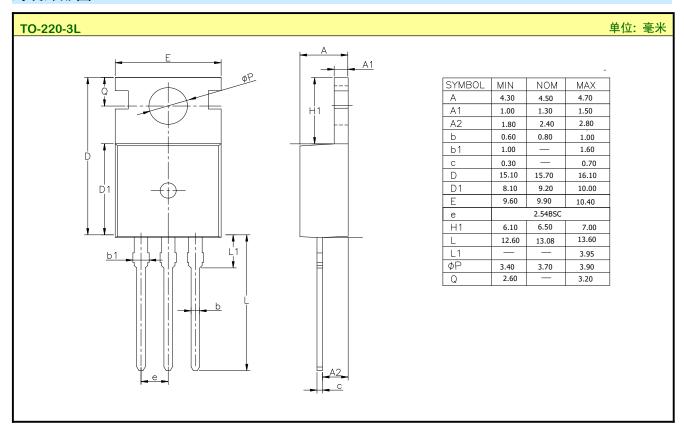
典型特性曲线(续)



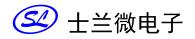



典型测试电路


栅极电荷量测试电路及波形图


开关时间测试电路及波形图

EAS测试电路及波形图



封装外形图

重要注意事项:

- ◆ 士兰保留说明书的更改权,恕不另行通知。客户在下单前应获取我司最新版本资料,并验证相关信息是否最新 和宗整。
- ◆ 我司产品属于消费类和/或民用类电子产品。
- 在应用我司产品时请不要超过产品的最大额定值,否则会影响整机的可靠性。任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用我司产品进行系统设计、试样和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生。
- 购买产品时请认清我司商标,如有疑问请与本公司联系。
- ◆ 转售、应用、出口时请遵守中国、美国、英国、欧盟等国家、地区和国际出口管制法律法规。
- ◆ 产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!
- ◆ 我司网站 http://www.silan.com.cn

SVT033R5NT说明书

产品名称: SVT033R5NT 文档类型: 说明书

版 权: 杭州士兰微电子股份有限公司 公司主页: http://www.silan.com.cn

版 本: 1.2

修改记录:

1. 更新电气图和典型测试电路图

2. 更新说明书重要注意事项

版 本: 1.1

修改记录:

1. 添加图 10

版 本: 1.0

修改记录:

1. 正式版本发布

杭州士兰微电子股份有限公司 http://www.silan.com.cn