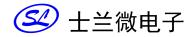

17A、55V N/P沟道增强型场效应管

描述

SVD1055SA N/P 沟道增强型功率 MOS 场效应晶体管,采用士兰 微电子低压平面 VDMOS 工艺技术制造。先进的工艺及元胞结构使得该 产品具有较低的导通电阻、优越的开关性能及很高的雪崩击穿耐量。该 产品可广泛应用于电子镇流器,低功率开关电源。

特点

- ◆ 低栅极电荷量
- ◆ 低反向传输电容
- 开关速度快
- ◆ 提升了 dv/dt 能力

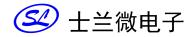


产品规格分类

产品名称	封装形式	打印名称	环保等级	包装
SVD1055SA	SOP-8-225-1.27	SVD1055SA	无卤	料管
SVD1055SATR	SOP-8-225-1.27	SVD1055SA	无卤	编带

极限参数(除非特殊说明, Tc=25°C)

参数		符号	参数	单位	
			N-ch	P-ch	丰江
漏源电压		V _{DS}	55	-55	V
栅源电压		V _{GS}	±20	±20	V
漏极电流	T _C =25°C	- I _D	17	-12	A
	T _C =100°C		12	-8.5	
漏极脉冲电流		I _{DM}	68	-48	Α
耗散功率(TC=25°C)		P _D	2.0		W
单脉冲雪崩能量(注1)		E _{AS}	122	106	mJ
工作结温范围		TJ	-55~+150		°C
贮存温度范围		T _{stg}	-55∼+150		°C

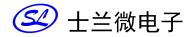

电性参数(除非特殊说明, Tc=25°C)

N channel

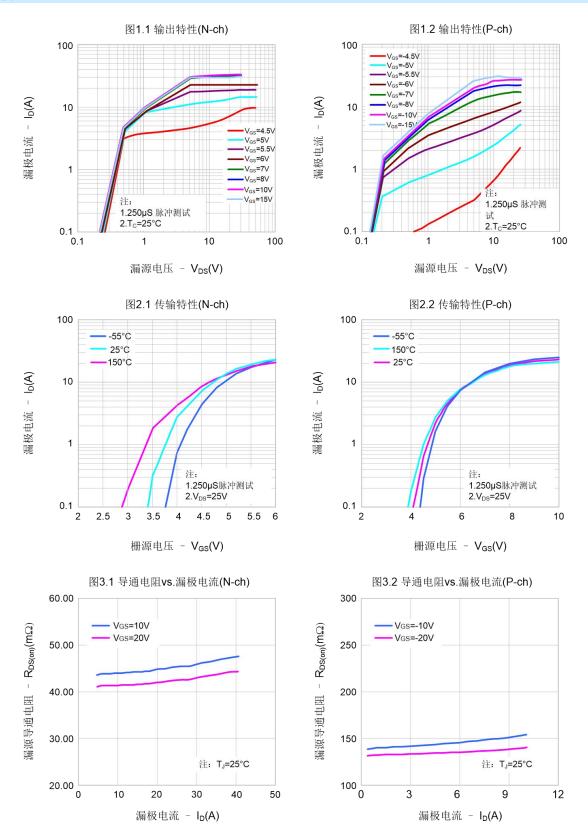
参数	符号	测试条件	最小值	典型值	最大值	单位
漏源击穿电压	BV _{DSS}	V _{GS} =0V, I _D =250μA	55			V
漏源漏电流	I _{DSS}	V _{DS} =55V, V _{GS} =0V			1	μΑ
栅源漏电流	I _{GSS}	V _{GS} =±20V, V _{DS} =0V			±100	nA
栅极开启电压	V _{GS(th)}	$V_{GS} = V_{DS}$, $I_D = 250 \mu A$	2.0		4.0	V
导通电阻	R _{DS(on)}	V _{GS} =10V, I _D =10A		45	70	mΩ
输入电容	C _{iss}			386		
输出电容	Coss	V _{DS} =25V, V _{GS} =0V, f=1.0MHz		147		pF
反向传输电容	C _{rss}			18		
开启延迟时间	td _(on)	V 00V V 40V D 050		5.2		
开启上升时间	t _r	V_{DD} =28V, V_{GS} =10V, R_{G} =25 Ω		42		ns
关断延迟时间	td _(off)	I _D =10A		26		
关断下降时间	t _f	(注2, 3)		16		
栅极电荷量	Q_{g}	V _{DD} =44V, V _{GS} =10V, I _D =10A		11		
栅极-源极电荷量	Q_gs			2.9		nC
栅极-漏极电荷量	Q_{gd}	(注 2, 3)		3.8		
源极电流	Is	MOS管中源极、漏极构成的反偏			17	_
源极脉冲电流	I _{SM}	P-N结			68	Α
源-漏二极管压降	V _{SD}	I _S =10A, V _{GS} =0V			1.3	V
反向恢复时间	T _{rr}	$I_S=10A$, $V_{GS}=0V$, $dI_F/dt=100A/\mu s$		42		ns
反向恢复电荷	Q _{rr}	(注2)		0.08		μο

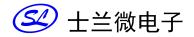
注:

- 1. L=1mH, I_{AS} =13A, V_{DD} =25V, R_{G} =25 Ω ,开始温度 T_{J} =25 $^{\circ}$ C;
- 2. 脉冲测试: 脉冲宽度≤300μs,占空比≤2%;
- 3. 基本上不受工作温度的影响。

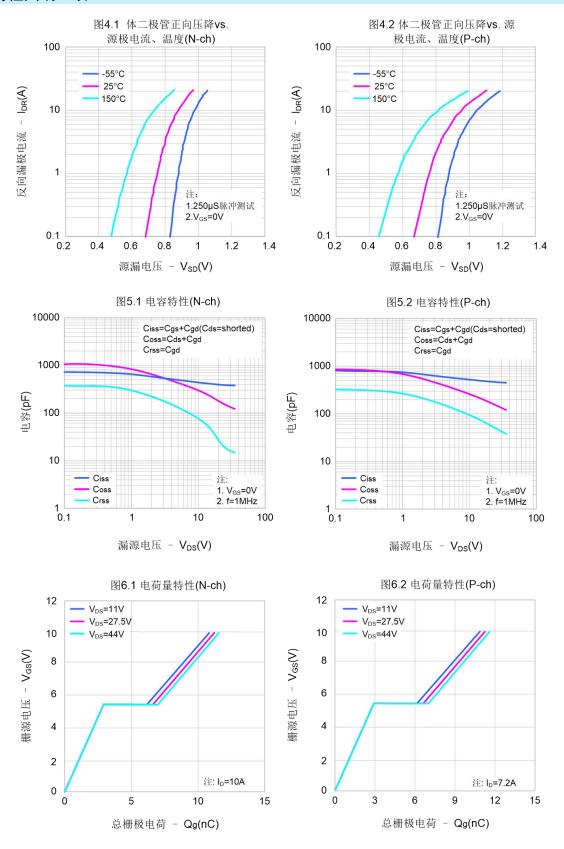

电性参数(除非特殊说明, Tc=25°C)

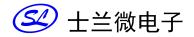
P-channel

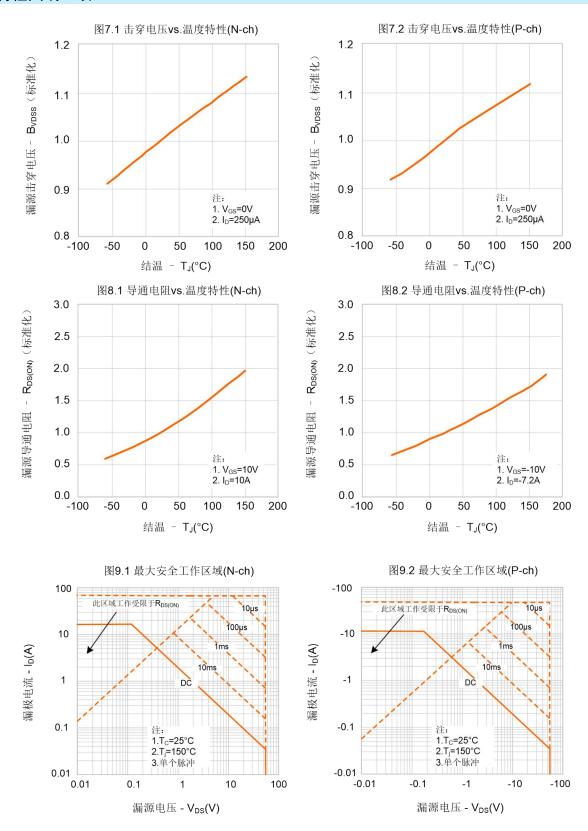

参 数	符号	测试条件	最小值	典型值	最大值	单位	
漏源击穿电压	BV _{DSS}	V _{GS} =0V, I _D =-250μA	-55			V	
漏源漏电流	I _{DSS}	V _{DS} =-55V, V _{GS} =0V			-1	μΑ	
栅源漏电流	I _{GSS}	$V_{GS}=\pm20V$, $V_{DS}=0V$			±100	nA	
栅极开启电压	V _{GS(th)}	$V_{GS} = V_{DS}$, $I_D = -250 \mu A$	-2.0		-4.0	V	
导通电阻	R _{DS(on)}	V _{GS} =-10V, I _D =-7.2A		145	175	mΩ	
输入电容	C _{iss}			461			
输出电容	Coss	V _{DS} =-25V,V _{GS} =0V,f=1.0MHz		144		pF	
反向传输电容	C _{rss}			46			
开启延迟时间	t _{d(on)}	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		8.4			
开启上升时间	t _r	V_{DD} =-28V, V_{GS} =-10V, R_{G} =24 Ω ,		52		ns	
关断延迟时间	$t_{\sf d(off)}$	I _D =-7.2A		35			
关断下降时间	t _f	(注 2, 3)		27			
栅极电荷量	Qg	V _{DS} =-44V, V _{GS} =-10V, I _D =-7.2A		14			
栅极-源极电荷量	Q _{gs}			2.8		nC	
栅极-漏极电荷量	Q_{gd}	(注 2, 3)		5.8			
源极电流	Is	MOS管中源极、漏极构成的反偏P-N			-12		
源极脉冲电流	I _{SM}	结			-48	Α	
源-漏二极管压降	V _{SD}	I _S =-7.2A, V _{GS} =0V			-1.6	V	
反向恢复时间	Trr	I _S =-7.2A, V _{GS} =0V,		54.33		ns	
反向恢复电荷	Q _{rr}	dl _F /dt=100A/µs(注2)		0.101		μς	

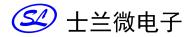

注:

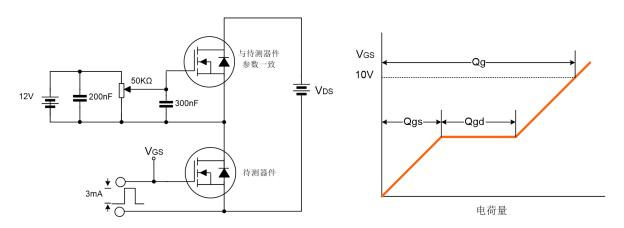
- 1. L=1.0mH, I_{AS} = -8A, V_{DD} =25V, R_G =25 Ω ,开始温度 T_J =25 $^{\circ}$ C;
- 2. 脉冲测试: 脉冲宽度≤300μs,占空比≤2%;
- 3. 基本上不受工作温度的影响。

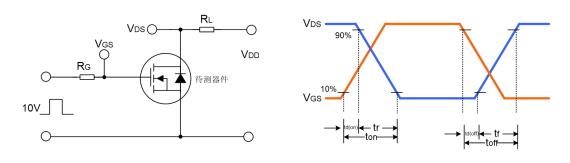



典型特性曲线

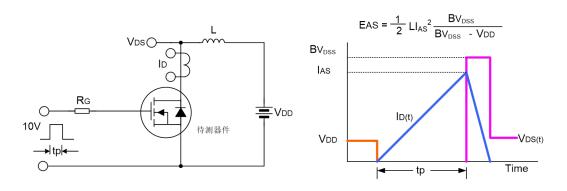


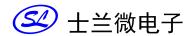

典型特性曲线 (续)


典型特性曲线 (续)

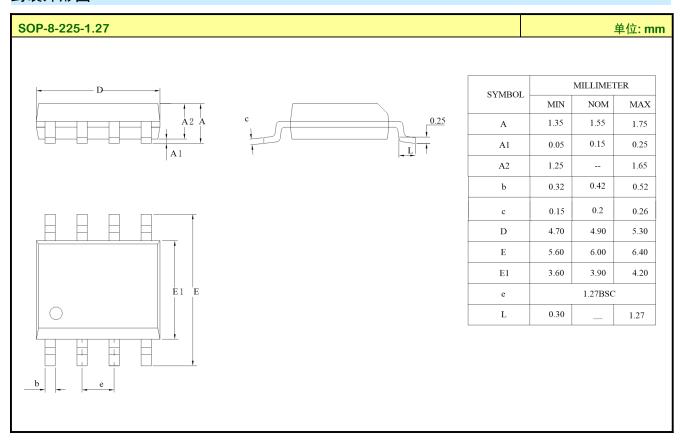


典型测试电路

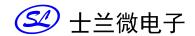

栅极电荷量测试电路及波形图



开关时间测试电路及波形图



EAS测试电路及波形图


封装外形图

声明:

- ◆ 士兰保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息是否完整和最新。
- ◆ 任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用 Silan 产品进行系统设计和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生!
- 产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!

产品名称: SVD1055SA 文档类型: 说明书

版 权: 杭州士兰微电子股份有限公司 公司主页: http://www.silan.com.cn

版 本: 1.2

修改记录:

1. 修改电气参数

- 2. 更新图 5,6 曲线图
- 3. 更新 SOP-8-225-1.27 封装外形图

版 本: 1.1

修改记录:

- 1. 修改描述
- 2. 修改电路符号
- 3. 修改产品规格分类

版 本: 1.0

修改记录:

1. 正式发布版本